實驗八 Electromagnetic Induction

Object:

To determine the *induction voltage* as a function of; the *strength* of the magnetic field, the *frequency* of the magnetic field, the *number of turns* of the induction coil and the *cross-section* of the induction coil.

Principle:

A magnetic field of variable frequency and varying strength is produced in a long coil. The voltages induced across thin coils which are pushed into the long coil are determined as a function of frequency (f), number of turns per unit length (n), diameter and field strength.

The magnetic field flux is expressed by,

$$\Phi_{B} = \int_{S} \vec{B} \cdot d\vec{A} \tag{1}$$

According to Maxwell's 3^{rd} equation, if $\frac{d\Phi_B}{dt} \neq 0$, there will be an induced electric voltage in an arbitrary closed path C, *i.e.*

voltage in an arbitrary closed path
$$C$$
, *i.e.*
$$V = -\frac{d\Phi_B}{dt} = -\frac{d}{dt} \int_{S} \vec{B} \cdot d\vec{A} = \oint_{c} \vec{E} \cdot d\vec{l}$$
 (2)

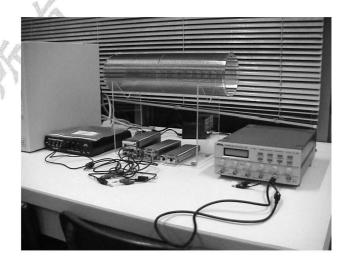
In the present case, the magnetic field is produced by a long field coil ("field coil", denoted as "f"). For a long solenoid coil (field coil) with N_f turns, a current $I_f = I_{fo} \sin \omega t$ flows through the field coil. Then, the magnitude of \vec{B} field inside the field coil is,

$$B_z = u_o I_f \frac{N_f}{L_f} = u_o I_f n_f \tag{3}$$

Here, $u_o = 1.26 \times 10^{-6} N/A^2$ (or $4\pi \cdot 10^{-7} Vs/Am$) is the permeability of free space. Then, from Eq. (2), the voltage induced in an *induction* coil (N_i turns, cross-section area A_i) is obtained:

$$V = -\frac{d\Phi_B}{dt} = -N_i \frac{d}{dt} (u_o I_f \frac{N_f}{L_f} A_i) = \frac{-u_o \omega N_i N_f A_i I_{fo} \cos \omega t}{L_f}$$
(4)

Equipments List:


Field Coil, d=120 mm	1
Induction Coil 1, 300 turns, A (cross-section)= 50×50 mm ²	1
(Coil 1 is also provided with 100 and 200 turns)	
Induction Coil 2, 300 turns, A (cross-section)= 30×50 mm ²	1
Induction Coil 3, 300 turns, A (cross-section)= 20×50 mm ²	1
Function Generator (AC power supply)	1
SW750 Interface Box	1
PC with interfacing software	1

Experimental Procedure:

- a) Measure the induction voltage V as a function of the area (cross-section) A of the induction coils and obtain V vs. A curve.
- b) Measure the induction voltage V as a function of the number of turns N_i (choosing coil I) and obtain V vs. N_i curve.
- c) Measure the induction voltage V as a function of frequency I_f (choosing coil I) and obtain V vs. I_f curve.
- d) Measure the induction voltage V as a function of frequency f (choosing coil I) and obtain V vs. f curve.

Tips for using Interfacing software:

- a) Click "Data Studio" on the screen.
- b) Click "Create Experiment".
- c) Choose "Voltage Sensor" from "Experiment Setup".
- d) Choose various displaying functions from "Displays".
- e) In the "Sampling Options", set up the time interval of obtaining data.
- f) Then you may begin your experiment anytime by click "Start" key.

Figure 1 Experimental set-up for magnetic induction.