實驗二 磁場中的磁矩

目的

一個通電導線圈置於均勻磁場中將會受轉矩的作用。轉矩與導線圈的半徑、匝數和通過電流,及其所在的外部磁場強度有關。

原理

一個封閉導線圈 C 載有電流 I 的磁矩m定義為:

$$\vec{m} = \frac{1}{2} \oint_C \vec{r} \times d\vec{r'} = I \oint_A d\vec{\Omega}$$
 ,其中 A 為給定區域 , C 為包圍區域 A 的邊界。

而一線圈(其磁矩為 \overline{m})置於一個磁通強度 \overline{B} 的磁場中所受的轉矩 \overline{T} 為:

$$\vec{T} = \vec{m} \times \vec{B} \tag{1}$$

均勻磁場可利用亥姆霍茲線圈(Helmholtz coil)產生,亥姆霍茲線圈是由兩組圓線圈所組成,其 半徑剛好等於兩組圓形線圈的距離,如圖 9-1 所示,在亥姆霍茲線圈中心為相當均勻的磁場。

對於一直徑為 d , 匝數為 n 的導線圈環,其磁矩 \overline{m} 為:

 $\vec{m} = n \ I \ \vec{A}$, \vec{A} 為導線圓環的面積向量

$$|\overrightarrow{m}| = n I \frac{\pi}{4} d^2 \tag{2}$$

若將此導線圓環置於載有電流I'的亥姆霍茲線圈的中心,從(1)式可知:

$$|\vec{\mathbf{T}}| = \mathbf{c} \ \mathbf{n} \ \mathbf{I} \ |\vec{\mathbf{A}}| \ \mathbf{I}' \ \sin\alpha$$
 (3)

其中 α 為 \overline{B} 與導線圓環面積向量 \overline{A} 的夾角, c 為亥姆霍茲線圈磁場常數。

實驗裝置圖

圖2-1. 實驗裝置圖

儀器

儀器名稱	數量	儀器名稱	數量
亥姆霍茲線圈(Helmholtz coil)	1對	線圈支架	1組
(Max:5A、直徑= 400mm、匝數 :154)			
單匝線圈(直徑 6、8.5、12 cm)	1個	扭力計(Max:0.01N)	1組
二匝線圈(直徑 12 cm)	1個	電源供應器	1台
三匝線圈(直徑 12 cm)	1個	電源供應器 15 VAC/12 VDC/5 A	1台
配電器	1個	方形支撐桿	1組
連接線	10條	基座組	1組
數位電表	2 台		

實驗步驟

- 一、 實驗裝置如圖2-1。
 - 1. 確認亥姆霍茲線圈磁場的方向。
 - 2. 確認數位電表的檔位(20A)。
 - 3. 確認三匝線圈在亥姆霍茲線圈的中心位置。
 - 4. 量測前請先將扭力計歸零並確認水平,旋轉扭力計下方的旋鈕使方形支撐桿於中心位置。
- 二、 探討亥姆霍茲線圈電流 I'(A)與轉矩的關係。
 - 1. 選取三匝線圈(d = 12cm)置於亥姆霍茲線圈中心,將線圈磁矩與磁場方向的夾角固定為 30 度,設定三匝線圈的電流 I = 3A。
 - 2. 改變亥姆霍茲線圈的電流 I'(A)並記錄扭力與轉矩於表一。

注意:亥姆霍茲線圈的電流I'不能超過 3A。

- 三、 探討導線圈中電流 I(A) 與轉矩的關係。
 - 1. 選取三匝線圈(d=12cm)置於亥姆霍茲線圈中心,線圈磁矩與磁場方向的夾角固定為 30 度, 並設定 I'=2A。
 - 2. 改變線圈中電流I(A)並記錄扭力與轉矩於表二。
- 四、 探討線圈匝數與轉矩的關係。
 - 1. 將線圈磁矩與磁場方向的夾角固定為 30 度,分別設定 $I = 3A \cdot I' = 2A$ 。
 - 2. 分別選取不同匝數(d 皆為 12cm)的線圈置於亥姆霍茲線圈中心,測量扭力與轉矩並記錄於表三。
- 万· 探討線圈面積與扭力的關係。
 - 1. 線圈的磁矩與磁場方向夾角固定為 30 度,分別設定 $I = 3A \cdot I' = 2A$ 。分別選取不同直徑 $d = 6 \cdot 8.5 \cdot 12$ cm的線圈置於亥姆霍茲線圈中心,測量扭力與轉矩並記錄於表四。
- ※角度的量測請觀察線圈連接的刻度鈕,參照裝置圖 9-1。

表一、I'(A)與扭力及轉矩的關係

()> (4==> 4> = (4)=(4)=(4)=(4)=(4)=(4)=(4)=(4)=(4)=(4)=		
$n = 3$, $I = 3A$, $d = 12cm$, $\alpha = 30^{0}$		
I'(A)	torsion(mN)	T(Nm)
0.6		
0.9		
1.2		
1.5		
1.8		
2.1		
2.4		
2.7		

表二、I(A)與扭力及轉矩的關係

$n = 3$, $I' = 2A$, $d = 12cm$, $\alpha = 30^0$		
I(A)	torsion(mN)	T(Nm)
1.0		
1.5		
2.0		
2.5		
3.0		
3.5		
4.0		
4.5		
5.0		

表三、線圈匝數與扭力及轉矩的關係

$I' = 2A$, $I = 3A$, $d = 12cm^2$, $\alpha = 30^0$		
n	torsion(mN)	T(Nm)
1		
2		
3		

表四、線圈直徑與扭力及轉矩的關係

$I' = 2A$, $I = 3A$, $n = 1$, $\alpha = 30^{0}$			
d(cm)	torsion(mN)	T(Nm)	
6			
8.5			
12			

數據處理

- 1. 分別繪出I'(A)、I(A)、導線圈匝數、導線直徑與轉矩的關係圖。
- 2. 利用表二量測的轉矩,藉由式(1)計算三匝線圈(I=3A, I'=2A, d=12cm, $\alpha=30^0$)在磁場中的磁矩(亥姆霍茲中心磁場計算請參照實驗8-2),並與式(2)所算的磁矩做比較。